ORIGINAL ARTICLE |
|
Year : 2016 | Volume
: 2
| Issue : 1 | Page : 8-11 |
|
Estimation of the Postmortem Interval by Measuring Blood Oxidation-reduction Potential Values
Zhuqing Jiang, Meng You, Xu Wang, Di Lu, Haidong Zhang, Shengli Di, Fengqin Zhang, Zhaoming Guo, Xiaofei E, Lin Chang, Jian Xiang, Rufeng Bai, Tiantong Yang
Center of Cooperative Innovation for Judicial Civilization, China University of Political Science and Law & Jilin University & Wuhan University; China University of Political Science and Law, Key Laboratory of Evidence Science, Ministry of Education, Beijing 100040, China
Correspondence Address:
Tiantong Yang Collaborative Innovation Center of Judicial Civilization, Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, 26 Houtun North Road, Qinghe, Haidian District, Beijing, PRC, 100192 China
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/2349-5014.155727
|
|
Accurate estimation of the postmortem interval (PMI) is an important task in forensic practice. In the last half-century, the use of postmortem biochemistry has become an important ancillary method in determining the time of death. The present study was carried out to determine the correlation between blood oxidation-reduction potential (ORP) values and PMIs, and to develop a three-dimensional surface equation to estimate the PMI under various temperature conditions. A total of 48 rabbits were placed into six groups and sacrificed by air embolism. Blood was obtained from the right ventricle of each rabbit, and specimens were stored at 10°C, 15°C, 20°C, 25°C, 30°C, and 35°C. At different PMIs (once every 4 h), the blood ORP values were measured using a PB-21 electrochemical analyzer. Statistical analysis and curve fitting of the data yielded cubic polynomial regression equations and a surface equation at different temperatures. Result: The results showed that there was a strong positive correlation between the blood ORP values at different temperatures and the PMI. This study provides another example of using a three-dimensional surface equation as a tool to estimate the PMI at various temperature conditions. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|